Broadband high-efficiency polymerized liquid crystal metasurfaces with spin-multiplexed functionalities in the visible

Author:

Lu Xinjian12,Li Xiaoyin1,Guo Yinghui12,Pu Mingbo12,Wang Jiangyu13,Zhang Yaxin12,Li Xiong12,Ma Xiaoliang12,Luo Xiangang12ORCID

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. University of Electronic Science and Technology of China

Abstract

Traditional optical components are usually designed for a single functionality and narrow operation band, leading to the limited practical applications. To date, it is still quite challenging to efficiently achieve multifunctional performances within broadband operating bandwidth via a single planar optical element. Here, a broadband high-efficiency polarization-multiplexing method based on a geometric phase polymerized liquid crystal metasurface is proposed to yield the polarization-switchable functionalities in the visible. As proofs of the concept, two broadband high-efficiency polymerized liquid crystal metalenses are designed to obtain the spin-controlled behavior from diffraction-limited focusing to sub-diffraction focusing or focusing vortex beams. The experimental results within a broadband range indicate the stable and excellent optical performance of the planar liquid crystal metalenses. In addition, low-cost polymerized liquid crystal metasurfaces possess unique superiority in large-scale patterning due to the straightforward processing technique rather than the point-by-point nanopatterning method with high cost and low throughput. The high-efficiency liquid crystal metasurfaces also have unrivalled advantages benefiting from the characteristic with low waveguide absorption. The proposed strategy paves the way toward multifunctional and high-integrity optical systems, showing great potential in mobile devices, optical imaging, robotics, chiral materials, and optical interconnections.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3