Detection of food additives based on an integrated self-injected metasurface microfluidic sensor

Author:

Zhao Yuhan12ORCID,Hao Jixuan12,Hou Zeyu12,Yan Bingxin12,Su Bo123ORCID,Cui Hailin,Zhang Cunlin123

Affiliation:

1. Beijing Key Laboratory for Terahertz Spectroscopy and Imaging

2. Key Laboratory of Terahertz Optoelectronics, Ministry of Education

3. Beijing Advanced Innovation Centre for Imaging Theory and Technology

Abstract

Advanced sensing equipment exhibits high sensitivity and reliability in detecting food additives, enabling the practical assessment of the safety of processed foods. Currently, chemical detection methods are commonly utilized for identifying food additives. However, these approaches tend to be intricate and time-consuming. In this study, we designed and fabricated an integrated terahertz microfluidic sensor, which achieves high sensitivity by incorporating a metasurface within the microfluidic chip. The metasurface comprises metal wires and split-ring resonators, with three optional sensing sites within the frequency domain of 0.1–1.2 THz, thereby enhancing the reliability of the sensor. Additionally, the use of a self-injection micropump improves the stability of the liquid flow rate, preventing experimental errors caused by manual injection. Utilizing this sensor, we conducted concentration sensing experiments on potassium sorbate and sodium benzoate solutions, successfully identifying sugar-containing and sugar-substituted beverages with high sensitivity and rapid sensing speed. The average sensitivity of the sensor is 152.8 GHz·RIU−1. The results of this study provide a feasible method for the development of microfluidic metasurface sensors.

Funder

Beijing Municipal Natural Science Foundation

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3