Secure key generation and distribution scheme based on historical fiber channel state information with LSTM

Author:

Wang Danyang,Wang HongxiangORCID,Ji YuefengORCID

Abstract

In this paper, a scheme to realize unclonable physical-layer security key generation and distribution (PL-SKGD) based on historical fiber channel state information (HFCSI) is proposed. PL-SKGD schemes based on channel characteristics for enhancing the physical-layer security of optical networks have been proposed in recent years. However, there are potential disadvantages in these schemes, such as 1) low key generation rate (KGR): the slow frequency of the analog waveform change of the channel characteristic leading to low KGR; 2) incompatibility with existing infrastructure: active scrambling to increase the frequency of channel characteristic changes, or tracking changes of channel characteristics requires additional devices; 3) easy to be cloned: all of the optical channel state information is reflected in the signal transmitted inside the fiber, which makes it easy to reproduce by illegal eavesdropper through features analysis and other methods. In order to solve the above problems, a PL-SKGD scheme is designed which uses the chain structure composed of long short-term memory neural network (LSTM-NN) units to learn and store the unique mapping relationship between historical channel time series and provides unclonability based on the fundamental fact that the eavesdropper Eve can never obtain the full HFCSI. The simulation conducted in a quadrature phase shift keying point-to-point optical link system verified successfully that KGR = 0.82 Gbit/s error-free SKGD. The loss function of LSTM-NN drops sharply in the early stages of training and remains a small value. The security of the SKGD system is analyzed, which effectively improves the unclonability of the system. Finally, it is verified that the optimal fiber channel length for error-free SKGD of the proposed scheme is 150 km considering the error correction capability of information reconciliation and weighing key sequence error rate and valid bit generation rate.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3