Abstract
The thickness-dependent third-order nonlinear optical properties of two-dimensional β-InSe and its potential applications as a saturable absorber in pulsed laser generation are investigated. InSe sheets with different layers are prepared by the chemical vapor deposition. Using open-aperture femtosecond Z-scan technique at 1030 nm, the modulation depth and nonlinear absorption coefficient are obtained to be 36% and -1.6 × 104 cm·GW-1, respectively. The intrinsic mechanism of the layer-dependent energy band structure evolution is analyzed based on density functional theory, and the theoretical analysis is consistent with the experimental results. Based on a waveguide cavity, a Q-switched mode-locked laser at 1 µm with a repetition frequency of 8.51 GHz and a pulse duration of 28 ps is achieved by utilizing the layered InSe as a saturable absorber. This work provides an in-depth understanding of layer-dependent properties of InSe and extends its applications in laser technology for compact light devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Taishan Scholar Project of Shandong Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献