Controlling periodic Fano resonances of quantum acoustic waves with a giant atom coupled to a microwave waveguide

Author:

Kuo Po-Chen1ORCID,Lin Jhen-Dong1,Huang Yin-ChunORCID,Chen Yueh-Nan12ORCID

Affiliation:

1. Center for Quantum Frontiers of Research and Technology

2. National Center for Theoretical Sciences

Abstract

Nanoscale Fano resonances, with applications from telecommunications to ultra-sensitive biosensing, have prompted extensive research. We demonstrate that a superconducting qubit, jointly coupled to microwave waveguides and an inter-digital transducer composite device, can exhibit acoustic Fano resonances. Our analytical framework, leveraging the Taylor series approximation, elucidates the origins of these quantum acoustic resonances with periodic Fano-like interference. By analyzing the analytical Fano parameter, we demonstrate that the Fano resonances and their corresponding Fano widths near the resonance frequency of a giant atom can be precisely controlled and manipulated by adjusting the time delay. Moreover, not just the near-resonant Fano profiles, but the entire periodic Fano resonance features can be precisely modulated from Lorentz, Fano to quasi-Lorentz shapes by tuning the coupling strength of the microwave waveguide. Our analytical framework offers insights into the control and manipulation of periodic Fano resonances in quantum acoustic waves, thereby presenting significant potential for applications such as quantum information processing, sensing, and communication.

Funder

National Science and Technology Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3