Characterization of the laser-induced breakdown spectroscopy near the gas–liquid two-phase interface

Author:

Liu Simeng12ORCID,Liu Yinghua12ORCID,Xu Boping12ORCID,Lei Bingying12,Ran Shuang12,Wang Yishan12,Duan Yixiang13,Zhao Wei12,Tang Jie1

Affiliation:

1. Xi’an Institute of Optics

2. University of Chinese Academy of Sciences

3. Sichuan University

Abstract

The characterization of laser-induced breakdown spectroscopy (LIBS) near the gas–liquid two-phase interface was investigated with the laser acting on the sample along the horizontal direction. Simulation of the laser beam focusing process and observation of laser beam spot images show that difference in focusing positions in the air and the solution results from refraction of the laser beam entering the solution from the air and the change of propagation direction on the container lateral. The peak power and mean irradiance of the focused laser beam spot increase with the distance away from the interface, which is attributed to the fact that the loss of laser energy due to the refraction and reflection of light at the interface decreases with the focusing position moving away from the interface. This variation trend of laser irradiance allows for the growth of the spectral line intensity and lifetime with increasing the distance from the interface. The plasma electron density and temperature decrease with the delay time but increase with the distance away from the interface at the same delay time. Our findings help us to gain more insight into the characteristics and evolution mechanisms of LIBS produced near the gas–liquid two-phase interface, which provides theoretical guidance for the correction of LIBS spectra especially in water pollution monitoring.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Natural Science Basic Research Program of Shaanxi Province

Key Deployment Research Program of XIOPM

Major Science and Technology Infrastructure Pre-research Program of the CAS

Open Research Fund of Key Laboratory of Spectral Imaging Technology of the CAS

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3