Optical frequency comb assisted denoising for multiple access and capacity enhancement of covert wireless communication

Author:

Yan Xianglei1ORCID,Pan Wei1,Zou Xihua1ORCID,Lu Bing2,Yan Lianshan1ORCID,Luo Bin1

Affiliation:

1. Southwest Jiaotong University

2. Chongqing University of Posts and Telecommunications

Abstract

An optical frequency comb (OFC)-assisted covert wireless communication system with multiple access and enhanced capacity is proposed and experimentally demonstrated. In the scheme, signals in multiple channels are spread and mixed together to use a single transmitter and then received by individual receivers according to multiple access channels. The mixed signal is highly contaminated by noise to achieve high concealment in both the time and frequency domains, and then effectively recovered as different channels using the OFC assisted analog deep denoising technique. In experiments, mixed signals of 16 access channels with a signal-to-noise ratio (SNR) from −18 to −5 dB are accommodated, showing high covertness and 16× capacity enhancement (16×10 Mbit/s). Mutual interference among different channels is also analyzed and greatly eliminated by phases optimization in the spectral-spreading process. This scheme can greatly improve the time and spectrum utilization efficiency, which will be of great significance for enabling multiple access, large capacity, and high security for wireless communications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Simulation Model Construction of Swept Frequency Dielectric Logging Response Based on Wireless Communication;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Optical frequency comb assisted reconfigurable broadband spread spectrum signal generation;Optics Express;2023-12-04

3. Low-Cost Covert Wireless Communication Assisted by Optical Frequency Comb for Deep Denoising;2022 IEEE International Topical Meeting on Microwave Photonics (MWP);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3