Integrated multimode optical waveguides in glass using laser induced deep etching

Author:

Reitz Birger1ORCID,Evertz AndreasORCID,Basten Robin12,Wurz Marc Christopher12,Overmeyer Ludger1

Affiliation:

1. Cluster of Excellence PhoenixD (Photonics, Optics and Engineering–Innovation Across Disciplines)

2. Leibniz Universität

Abstract

Glass is an ideal material for optical applications, even though only a few micromachining technologies for material ablation are available. These microstructuring methods are limited regarding precision and freedom of design. A micromachining process for glass is laser induced deep etching (LIDE). Without generating micro-cracks, introducing stress, or other damages, it can precisely machine many types of glass. This work uses LIDE to subtractive manufacture structures in glass carrier substrates. Due to its transmission characteristics and refractive index, the glass substrate serves as optical cladding for polymer waveguides. In this paper, the described fabrication process can be divided into two sub-steps. The doctor blade technique and subsequent additive process step is used in manufacturing cavities with U-shaped cross-sections in glass in order to fill the trenches with liquid optical polymers, which are globally UV-cured. Based on the higher refractive index of the polymer, it enables optical waveguiding in the visible to near-infrared wavelength range. This novel, to the best of our knoowledge, manufacturing method is called LDB (LIDE-doctor-blade); it can be the missing link between long-distance transmissions and on-chip solutions on the packaging level. For validation, optical waveguides are examined regarding their geometrical dimensions, surface roughness, and waveguiding ability, such as intensity distribution and length-dependent attenuation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3