Mechanism of nanostructure processing on Au and Ag nano-film by a nanosecond laser illuminating cantilevered scanning near-field optical microscopy tip

Author:

Wang XuewenORCID,Cui Jianlei1,Yin Hailong,Wang Zhijun1,He Xiaoqiao2,Mei XuesongORCID

Affiliation:

1. Northwestern Polytechnical University

2. City University of Hong Kong

Abstract

Nanostructure processing by a laser illuminating cantilevered scanning near-field optical microscopy (SNOM) tip is a novel technology that has received extensive attention from researchers. In this paper, theoretical investigations of the mechanism for nanostructure fabrication on Au and Ag nano-film by this technology are realized by the finite element method. The light field intensity and temperature distribution on Au and Ag surfaces at the near-field of the SNOM tip apex after illumination is simulated. The results reveal that the laser is restricted and enhanced within the SNOM tip aperture during illumination. Locally excited surface plasmon polaritons, which induce near-field enhancement on the Au and Ag nano-film at the vicinity of the aperture, are significant for nanostructure fabrication. The impacts of several parameters such as aperture width w , gap between the apex and substrate g , and the initial electric field intensity | E 0 | of the laser on the temperature of the Au and Ag substrate surfaces during fabrication are deeply studied. It reveals that the surface temperature depends on both the enhancement of the light field intensity and the transmitted laser. The enhancement is dominant in affecting temperature when the gap is small, while the transmittance becomes the main factor influencing the surface temperature with the increase of the gap.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

State Key Laboratory of Solidification Processing

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3