Unified performance analysis of interference-limited and interference-free dual-hop mixed RF/FSO systems with partial relay selection under pointing errors

Author:

Ding JunrongORCID,Kang DongpengORCID,Tan Liying,Ma Jing

Abstract

This paper investigates the performance of interference-limited and interference-free dual-hop mixed radio frequency (RF)/free space optical (FSO) systems with partial relay selection (PRS) for the variable-gain (VG) amplify-and-forward (AF) relaying scenario. We concentrate on the generalized channel model that not only describes different application scenarios but also allows a more accurate description of the channel characteristics. Specifically, the PRS-aided RF link is modeled by the κ-μ shadowed distribution, and the FSO link is expressed in terms of Fox’s H-function, which unifies Fisher-Snedecor F, Gamma-Gamma (GG), and Malága (M) distributions for atmospheric turbulence along with pointing errors and detection modes. The interference signals at the selected relay are modeled by independent identically κ-μ shadowed distributions. Using our analytical framework, new unified closed-form expressions for the cumulative distribution function (CDF), the average bit error rate (BER), and the ergodic capacity are derived. Additionally, we provide asymptotic expressions of the average BER at high SNR. The analysis quantifies the impact of co-channel interference, pointing errors, number of relays, and rank of the selected relay on the considered system’s performance. Finally, numerical results and Monte Carlo (MC) simulations are presented to confirm the effectiveness of the derived expressions. Note that our results provide a generalized framework for comprehensive studies of this kind of systems.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3