Affiliation:
1. Nanjing University of Aeronautics and Astronautics
2. MIIT
3. Shandong Normal University
4. Nanjing University
Abstract
Non-Hermitian optics has emerged as a feasible and versatile platform to explore many extraordinary wave phenomena and novel applications. However, owing to ineluctable systematic errors, the constructed non-Hermitian phenomena could be easily broken, thus leading to a compromising performance in practice. Here we theoretically proposed a dynamically tunable mechanism through GST-based phase-change material (PCM) to achieve a reconfigurable non-Hermitian system, which is robust to access the chiral exceptional point (EP). Assisted by PCM that provides tunable coupling efficiency, the effective Hamiltonian of the studied doubly-coupled-ring-based non-Hermitian system can be effectively modulated to resist the external perturbations, thus enabling the reconfigurable chiral EP and a tunable non-reciprocal transmission. Moreover, such tunable properties are nonvolatile and require no static power consumption. With these superior performances, our findings pave a promising way for reconfigurable non-Hermitian photonic devices, which may find applications in tunable on-chip sensors, isolators and so on.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Postdoctoral Science Foundation of Jiangsu Province
Natural Science Foundation of Jiangsu Province
Subject
Atomic and Molecular Physics, and Optics