Affiliation:
1. Peng Cheng Laboratory
2. Chinese Academy of Sciences
3. Wuhan Institute of Quantum Technology
Abstract
Structural-color nanoprinting, which can generate vivid colors with spatial resolution at subwavelength level, possesses potential market in optical anticounterfeiting and information encryption. Herein, we propose an ultracompact metasurface with a single-cell design strategy to establish three independent information channels for simultaneous watermarked structural-color nanoprinting and holographic imaging. Dual-channel spectrum manipulation and single-channel phase manipulation are combined together by elaborately introducing the orientation degeneracy into the design of variable dielectric nanobricks. Hence, a structural-color nanoprinting image covered with polarization-dependent watermarks and a holographic image can be respectively generated under different decoded environments. The proposed metasurface shows a flexible method for tri-channel image display with high information capacity, and exhibits dual-mode anticounterfeiting with double safeguards, i.e., polarization-controlled watermarks and a far-field holographic image. This study provides a feasible route to develop multifunctional metasurfaces for applications including optical anticounterfeiting, information encryption and security, information multiplexing, etc.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献