Affiliation:
1. Air Force Engineering University
Abstract
An ultrawideband, polarization-insensitive, metamaterial absorber for oblique angle of incidence is presented using characteristic mode analysis. The absorber consists of conductive meander square loops and symmetric bent metallic strips, which are embedded with lumped resistors. With the aid of modal currents and modal weighting coefficients, the positions of the lumped resistors are determined. After that, the equivalent circuit (EC) model and admittance formula are proposed and analyzed to further understand the working principle and ultrawide bandwidth. The proposed absorber measures an absorption bandwidth of 4.3–26.5 GHz (144.1% in fractional bandwidth) for 90% absorptivity under normal incidence. At the oblique angle of incidence of 45°, the bandwidth of 90% absorptivity is still 5.1–21.3 GHz (122.72%) for transverse electric (TE) polarization, and 6.8–29.5 GHz (125.07%) for transverse magnetic (TM) polarization. The good agreement among simulation, measurement, and EC calculation demonstrates the validity of the proposed method and indicates that the method can be applied to other microwave and optical frequency bands. The proposed metamaterial absorber can be widely applied in electromagnetic compatibility, electromagnetic interference, radar stealth, and biomedical detection.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi Province
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献