Spatial susceptibility modulation and controlled unidirectional reflection amplification via four-wave mixing

Author:

Geng Yue,Pei Xiaoshan,Li Guanrong,Lin Xinyu,Zhang Hanxiao,Yan Dong,Yang Hong

Abstract

Control of unidirectional light propagation is of paramount importantance to optical signal processing and optical communication. Especially, the amplified optical signal can isolate noise well that may provide more applications. In this work, we propose a dynamically modulated regime to realize unidirectional reflection amplification in a short and dense uniform atomic medium, and all atoms are driven into four-level double-Λ type by two coupling fields with linearly varied intensities along x direction and two weak probe fields. Based on four-wave mixing resonance and the broken spatial symmetry, the complete nonreciprocal reflection (unidirectional reflection) can be amplified with reflectivity more than 2.0, even to 6.0. In addition, the width, height, and position of the unidirectional reflection bands can be tunable. Thus, our regime is feasible and may inspire further applications in all-optical networks that require controllable unidirectional light amplification.

Funder

Specific research fund of The Innovation Platform for Academicians of Hainan Province

Nature Science Foundation of Science and Technology Department of Jilin Province

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3