Photonically-driven Schottky diode based 0.3 THz heterodyne receiver

Author:

Belio-Apaolaza IñigoORCID,Seddon James,Moro-Melgar Diego1,Indiran Hanu Priya,Graham Chris,Balakier Katarzyna,Cojocari Oleg1,Renaud Cyril C.

Affiliation:

1. ACST GmbH

Abstract

Photonics-based technologies are key players in a number of emerging applications in the terahertz (THz) field. These solutions exploit the well-known advantages of optical devices, such as ultra-wide tuneability and direct integration with fiber networks. However, THz receivers are mainly implemented by fully electronic solutions, where Schottky barrier diodes (SBD) are the preferred option as detectors and mixers due to their excellent response within the THz range at room temperature, and technological maturity. Here, we demonstrate an SBD-based subharmonic mixer (SHM) at 300 GHz pumped with a photonic local oscillator. The Schottky mixer is a prototype designed and manufactured by ACST GmbH, operating at 270-320 GHz. The local oscillator is generated by photomixing on a high-frequency and high-power uni-travelling-carrier photodiode (UTC-PD), providing enough power to saturate conversion loss. Minimum single-side-band conversion loss of 14.4 dB and a peak dynamic range of 130 dB have been measured. Finally, as a proof of concept we realize an all-photonics-based 5 Gbps wireless bridge, utilizing the optically-pumped SBD mixer. With this work, we prove the feasibility of high-performance hybrid Schottky-photonic THz receivers, incorporating the best of both worlds.

Funder

Horizon 2020 Framework Programme

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3