Femtosecond laser upgrading the quality of bismuth films to enhance ultra-broadband photodetection

Author:

Lin Yucai1ORCID,Chen Shuxia2,Xu Chang2,Fan Zipu2,Zou Tingting1,Sun Dong2,Yang Jianjun1

Affiliation:

1. University of Chinese Academy of Sciences

2. Peking University

Abstract

Topological insulator bismuth has attracted considerable attention for the fabrication of room-temperature, wide bandwidth, and high-performance photodetectors due to the gapless edge state and insulating bulk state properties. However, both the photoelectric conversion and carrier transportation of the bismuth films are extremely affected by the surface morphology and grain boundaries to limit optoelectronic properties further. Here, we demonstrate a strategy of femtosecond laser treatment for upgrading the quality of bismuth films. After the treatment with proper laser parameters, the measurement of average surface roughness can be reduced from Ra = 44 nm to 6.9 nm, especially with accompany of the evident grain boundary elimination. Consequently, the photoresponsivity of the bismuth films increases approximately 2 times within an ultra-broad spectrum range from the visible to mid-infrared. This investigation suggests that the femtosecond laser treatment can help to benefit the performance of topological insulator ultra-broadband photodetectors.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

China Postdoctoral Science Foundation

Jilin Provincial Science & Technology Development Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3