Iterative algorithm computational spectrometer based on a single-hidden-layer neural network

Author:

Zheng Yuanhao,Liao Haojie,Yang LinORCID,Chen Yao

Abstract

Computational spectrometers have great application prospects in hyperspectral detection, and fast and high-precision in situ measurement is an important development trend. The computational spectrometer based on iterative algorithms has low requirements for computational resources and is easy to achieve hardware integration and in situ measurement. However, iterative algorithms are difficult to achieve high reconstruction accuracy due to the ill-posed nature of problems. Neural networks have powerful learning capabilities and can achieve high-precision spectral reconstruction. However, solely relying on neural network algorithms for reconstruction requires higher storage space and computing power from hardware devices, which makes it difficult to integrate large-scale neural network models into embedded systems. We propose using neural networks to alleviate the effect of the problem ill-posedness on the reconstruction results of iterative algorithms, so as to improve the reconstruction accuracy of the iterative algorithm computational spectrometers. First, spectral reconstruction was performed with iterative algorithms using a public spectral dataset. Then, a single-hidden-layer neural network was trained to establish a fitting relationship between the iterative algorithm spectral reconstruction results and the original spectrum. Finally, simulation and experimental results show that the proposed application of neural networks to alleviate the ill-posed problem of the iterative algorithm spectral reconstruction can effectively improve the reconstruction accuracy of iterative algorithm computational spectrometers with low computational resources. The research results may have good potential in achieving fast and high-precision in situ measurements of computational spectrometers.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3