Abstract
Dielectric metasurface empowering efficient light polarization control at the nanoscale, has recently garnered tremendous research interests in the field of high-resolution image encryption and display, particularly at low-loss wavelengths in the visible band. Nevertheless, due to the single fixed polarization conversion function, the image (either positive or negative image) can always be decrypted in a host-uncontrollable manner as long as the user applies an analyzer to select the polarization component of the output light. Here, we resort to half-waveplate- and quarter-waveplate-like silicon nanopillars to form a metamolecule of a dielectric diatomic metasurface, which can yield versatile linearly polarized (LP) and circularly polarized (CP) light upon orthogonally linear-polarized incidences, providing new degrees of freedom for image display and encryption. We show both theoretically and numerically that versatile different paired LP and CP combinations could be achieved by simply adjusting the orientation angles of the two nanopillars. The bifunctional polarization conversion functions make possible that a meta-image can only be seen when incident light is linearly polarized at a specific polarization angle, whereas no image can be discerned for the orthogonal polarization incidence case, indicating the realization of incidence-polarization secured meta-image. This salient feature holds for all individual metamolecules, reaching a remarkable image resolution of 52,916 dots per inch. By fully exploiting all polarization conversions of four designed metamolecules, three-level incidence polarization-secured meta-image can also be expected.
Funder
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献