Optically-reconfigurable integrated optical directed logic computing based on silicon photonics

Author:

Wang Weiqin,Yu Xinyang,Lai Sihao,Wu Hao,Yan SiqiORCID,Tang MingORCID

Abstract

Optical directed logic, as a novel logical operation scheme, harmoniously combines the benefits of optical and electrical signals, surpassing traditional electrical and all-optical logic operations in terms of the flexibility and power consumption. Its potential in high-speed optical signal processing and electro-optical computing is immense. However, achieving tunability of the logic function normally relies on external electrical tuning or multiple laser sources, which often results in excessive power consumption and costs. In this work, by utilizing the polarization state of light within the optical directed logic, we demonstrate an optical directed logic device on a silicon-based platform. This single device can realize three different logic operations, which are XNOR, XOR and NAND, by simply changing the input light's polarization state, which comes at a minimal additional power consumption. Moreover, we also significantly enhance the device's response speed through a novel side-integrated metal thermal phase shifter, reducing the response time to 5 µs. Ultimately, we demonstrate logic operations at 60 kbps which maintains a leading standard among the currently reported thermally tuning optical-directed logic (ODL) devices, and successfully integrated polarization division multiplexing technique into ODL devices. This result provides a novel method to realize high-speed optical directed logic with high reconfigurability, which presents significant application prospects in the high-speed optical information processing field.

Funder

Major Program (JD) of Hubei Province

National Natural Science Foundation of China

Key Research and Development Program of Hubei Province

Innovation Program for Quantum Science and Technology

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3