Affiliation:
1. Nanchang University 330031
Abstract
Owing to polarization-independent property of propagating phases inside isotropic dielectric layers, Fabry-Perot resonances in metal-dielectric-metal sandwich structures and one-dimensional (1-D) photonic crystals (PhCs) with isotropic dielectric defects are polarization-insensitive. Herein, we introduce an all-dielectric elliptical metamaterial (EMM) defect into a 1-D PhC to realize an anomalous polarization-sensitive Fabry-Perot resonance empowered by the polarization-sensitive property of the propagating phase inside the all-dielectric EMM layer. The wavelength difference of the Fabry-Perot resonance between transverse magnetic and transverse electric polarizations is larger than 100 nm at the incident angle of 45 degrees. Enabled by the polarization-sensitive property of the Fabry-Perot resonance, high-performance polarization selectivity can be achieved in a broad angle range. Our work offers a viable recipe, well within the reach of current fabrication technique, to explore polarization-dependent physical phenomena and devices.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
National Natural Science Foundation of China
Science and Technology Program of Guangzhou
Natural Science Foundation of Jiangxi Province
Start-up Funding of Guangdong Polytechnic Normal University
Interdisciplinary Innovation Fund of Nanchang University
Subject
Atomic and Molecular Physics, and Optics