Open-access database for digital lensless holographic microscopy and its application on the improvement of deep-learning-based autofocusing models

Author:

Buitrago-Duque Carlos1ORCID,Tobón-Maya Heberley1ORCID,Gómez-Ramírez Alejandra1,Zapata-Valencia Samuel I.1ORCID,Lopera Maria J.2ORCID,Trujillo Carlos2ORCID,Garcia-Sucerquia Jorge1ORCID

Affiliation:

1. Universidad Nacional de Colombia Sede Medellín

2. Universidad EAFIT

Abstract

Among modern optical microscopy techniques, digital lensless holographic microscopy (DLHM) is one of the simplest label-free coherent imaging approaches. However, the hardware simplicity provided by the lensless configuration is often offset by the demanding computational postprocessing required to match the retrieved sample information to the user’s expectations. A promising avenue to simplify this stage is the integration of artificial intelligence and machine learning (ML) solutions into the DLHM workflow. The biggest challenge to do so is the preparation of an extensive and high-quality experimental dataset of curated DLHM recordings to train ML models. In this work, a diverse, open-access dataset of DLHM recordings is presented as support for future research, contributing to the data needs of the applied research community. The database comprises 11,760 experimental DLHM holograms of bio and non-bio samples with diversity on the main recording parameters of the DLHM architecture. The database is divided into two datasets of 10 independent imaged samples. The first group, named multi-wavelength dataset, includes 8160 holograms and was recorded using laser diodes emitting at 654 nm, 510 nm, and 405 nm; the second group, named single-wavelength dataset, is composed of 3600 recordings and was acquired using a 633 nm He–Ne laser. All the experimental parameters related to the dataset acquisition, preparation, and calibration are described in this paper. The advantages of this large dataset are validated by re-training an existing autofocusing model for DLHM and as the training set for a simpler architecture that achieves comparable performance, proving its feasibility for improving existing ML-based models and the development of new ones.

Funder

Ministerio de Ciencia, Tecnología e Innovación

Universidad Nacional de Colombia

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3