Affiliation:
1. Shanghai Institute for Advanced Communication and Data Science, Shanghai University
Abstract
We demonstrate a programmable high-order mode control method that can be implemented in high-power fiber lasers. 2 W average-power mode-locked pulses are obtained based on a mode-locked fiber laser working in dissipative soliton resonance regime. The fundamental mode (LP01) is fully or partially converted to the high-order modes (LP11a/b) via an acoustically-induced fiber grating. The mode-superposition fields are recorded using an optical 4f system, and mode components are subsequently analyzed by a mode decomposition algorithm. Our experiments suggest that the mode patterns are stable and dynamically switchable. The method is expected to possess good application value in optical tweezers, fiber communication, laser material processing and other research fields.
Funder
State Key Laboratory of Pulsed Power Laser Technology
Science and Technology Commission of Shanghai Municipality
Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
111 Project
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献