Abstract
Metasurfaces offer unprecedented possibilities for developing versatile ultracompact photonic devices with unique functions, e.g., for linear- or circular-polarized light beam steering. Here we report a three-dimensional (3D) chiral metasurface for phase controlling and beam steering, which consists of periodically arranged double-layer circular arc chiral nanostructures. By tuning the central angle of the lower circular arc, the left- and right-circularly polarized light (LCP and RCP) induce different spatial phases, which have been designed as a beam steering device to realize the abnormal reflection of LCP and the mirror reflection of RCP in the near-infrared (NIR) spectrum from 900 nm to 1150 nm, providing a potential device for chiral molecule detection.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Science and Technology Research Project of Hebei Higher Education Institutions
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献