Author:
Luo Hongyu,Wang Yongzhi,Chen Junsheng,Wang Biao,Li Jianfeng,Liu Yong
Abstract
We report, for the first time, to the best of our knowledge, mid-infrared (mid-IR) laser generation, from a red-diode-clad-pumped Er3+/Dy3+ codoped ZrF4 fiber laser. A free-running laser at ∼3.4 µm, mainly from the 4F9/2→4I9/2 transition of Er3+, directly excited by a 659-nm laser diodehas been achieved at room temperature with a maximum power of 0.8 W and 8.8% slope efficiency. In this system, the long-lived 4I11/2 and 4I13/2 states are rapidly depopulated by energy transfer to the codoped Dy3+ ions and energy transfer upconversion between the Er3+ ions, resulting in the accelerated recycling of ions. Additionally, the free-running dual-wavelength operation state at ∼3.3 and ∼3.5 µm is also observed, producing a total maximum power of 0.95 W with 10.7% slope efficiency, representing the first watt-class output from a diode-pumped rare-earth-doped fiber laser far beyond 3 µm. By employing a diffraction grating, continuous spectral tuning across the 642-nm range from 3053.9 to 3695.9 nm has been demonstrated. The proposed scheme provides, to the best of our knowledge, a promising new platform for laser generation in the mid-IR region of 3–4 µm.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Sichuan Province Science and Technology Support Program
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献