High-precision dynamic three-dimensional shape measurement of specular surfaces based on deep learning

Author:

Wu Zhaoxing1,Wang Jie1,Jiang Xuan1,Fan Luyao1,Wei Chen1,Yue Huimin1ORCID,Liu Yong1

Affiliation:

1. University of Electronic Science and Technology of China

Abstract

In order to solve the difficulty of traditional phase measuring deflectometry (PMD) in considering precision and speed, an orthogonal encoding PMD method based on deep learning is presented in this paper. We demonstrate for, what we believe to be, the first time that deep learning techniques can be combined with dynamic-PMD and can be used to reconstruct high-precision 3D shapes of specular surfaces from single-frame distorted orthogonal fringe patterns, enabling high-quality dynamic measurement of specular objects. The experimental results prove that the phase and shape information measured by the proposed method has high accuracy, almost reaching the results obtained by the ten-step phase-shifting method. And the proposed method also has excellent performance in dynamic experiments, which is of great significance to the development of optical measurement and fabrication areas.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3