Observation of delocalization transition in topological waveguide arrays with long-range interactions

Author:

Wang Li-ChengORCID,Chen Yang1ORCID,Tian Zhen–NanORCID,Wang Ying–De,Ren Xi–Feng1ORCID,Chen Qi–Dai

Affiliation:

1. University of Science and Technology of China

Abstract

Topological edge states are a generic feature of topological insulators, and the long-range interactions, which break certain properties of topological edge states, are always non-negligible in real physical systems. In this Letter, we investigate the influence of next-nearest-neighbor (NNN) interactions on the topological properties of the Su–Schrieffer–Heeger (SSH) model by extracting the survival probabilities at the boundary of the photonic lattices. By introducing a series of integrated photonic waveguide arrays with different strengths of long-range interactions, we experimentally observe delocalization transition of light in SSH lattices with nontrivial phase, which is in good agreement with our theoretical predictions. The results indicate that the NNN interactions can significantly affect the edge states, and that the localization of these states can be absent in topologically nontrivial phase. Our work provides an alternative way to investigate the interplay between long-range interactions and localized states, which may stimulate further interest in topological properties in relevant structures.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects in Jilin Province

National Key Research and Development Program of China

Innovation Program for Quantum Science and Technology

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3