Perfect absorption and phase singularities induced by surface lattice resonances for plasmonic nanoparticle array on a metallic film

Author:

Bai Yating,Zheng Haiyan,Zhang Qiang,Yu Ying,Liu Shao-dingORCID

Abstract

The formation of pairs of perfect absorption associated with phase singularities in the parameter space using the hybridized structure constructed with a metallic nanoparticle array and a metallic film is promising to enhance light-mater interactions. However, the localized plasmon resonances of the array possess strong radiative losses, which is an obstacle to improve the performances for many applications. On the contrary with the subwavelength array hybridized structure, this study shows that by enlarging the lattice spacing, the oscillator strength of the nanoparticles can be enhanced with the formation of surface lattice resonance, thereby leading to similar but much narrower pairs of perfect absorption due to the interactions with the Fabry-Pérot cavity modes. Furthermore, when the surface plasmon polariton mode shift to the same spectral range associated with the enlarged lattice spacing, the coupling and mode hybridization with the surface lattice resonance result in an anticrossing in the spectra. Although the resonance coupling does not enter the strong coupling regime, the quality factors (∼ 134) and near-field enhancements (∼ 44) are strongly enhanced for the hybridized resonance modes due to the effectively suppressed radiative losses compared with that of the localized plasmon resonances, which make the hybridized structure useful for the design of functional nanophotonic device such as biosensing, multi-model nanolasing, and high-quality imaging.

Funder

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3