Affiliation:
1. University of Central Florida
2. University of Texas at El Paso
3. Integrated Sensing and Processing Branch
Abstract
Photonic crystals can be engineered so that the flow of optical power and the phase of the field are independently controlled. The concept is demonstrated by creating a self-collimating lattice with an embedded cylindrical lens. The device is fabricated in a photopolymer by multi-photon lithography with the lattice spacing chosen for operation around the telecom wavelength of 1550 nm. The lattice is based on a low-symmetry rod-in-wall unit cell that strongly self-collimates light. The walls are varied in thickness to modulate the effective refractive index so light acquires a spatially quadratic phase profile as it propagates through the device. Although the phase of the field is altered, the light does not focus within the device because self-collimation forces power to flow parallel to the principal axes of the lattice. Upon exiting the device, ordinary propagation resumes in free space and the curved phase profile causes the light to focus. An analysis of the experimentally observed optical behavior shows that the device behaves like a thin lens, even though the device is considerably thick.
Funder
National Science Foundation
Air Force Research Laboratory
Subject
Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献