Partition of estimated locations: an approach to accurate quality metrics for stochastic optical localization nanoscopy

Author:

Sun YiORCID

Abstract

Performance evaluation of localization algorithms in stochastic optical localization nanoscopy is necessary and important to applications. By simulation, a localization algorithm estimates a set of emitter locations from a simulated data movie, whose error in comparison with the set of true locations indicates the performance of the algorithm. Since the partition of estimated locations is unknown, the sample root mean square error (RMSE) cannot be computed, and the universal root mean square minimum distance (RMSMD) eventually becomes saturated as localization errors become large. In this paper, we propose a partition algorithm to estimate the partition of estimated locations. It makes use of three facts: (i) the true locations are known; (ii) the number of activations for each emitter is known; (iii) an estimated location is more likely to be associated with the nearest available emitter and vice versa. The estimated partition enables computation of the sample RMSE (RMSE-P) and improvement of the RMSMD with modification (RMSMD-P). Two simulations are carried out to demonstrate the efficacy of the partition algorithm and the metrics of RMSE-P and RMSMD-P. One investigates the effect of a large range of localization biases, and the other examines performance of the unbiased Gaussian information-achieving (UGIA) estimator. As shown by the results of both simulations, the proposed partition algorithm accurately estimates the partition in terms of the F1 score; with the partition estimated by the partition algorithm, the RMSE-P and RMSMD-P are approximately equal to the RMSE with the true partition in a large range of localization biases and errors. This demonstrates their broad applicability in performance evaluation of localization algorithms under the benchmark of the UGIA estimator.

Funder

Professional Staff Congress

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3