Measurement of individual color space using a luminous vector field

Author:

Alleysson David,Méary David

Abstract

This study is intended to measure the geometry of the observer’s color space when viewing a computer screen and to define individual variations from these data. A CIE photometric standard observer assumes that the eye’s spectral efficiency function is constant, and photometry measurements correspond to vectors with fixed directions. By definition, the standard observer decomposes color space into planar surfaces of constant luminance. Using heterochromatic photometry with a minimum motion stimulus, we systematically measure the direction of luminous vectors for many observers and many color points. During the measurement process, the background and stimulus modulation averages are fixed to the given points to ensure that the observer is in a fixed adaptation mode. Our measurements result in a vector field or set of vectors (x,v), where x is the point’s color space position, and v is the observer’s luminosity vector. To estimate surfaces from vector fields, two mathematical hypotheses were used: (1) that surfaces are quadratic or, equivalently, that the vector field model is affine, and (2) that the metric of surfaces is proportional to a visual origin. Across 24 observers, we found that vector fields are convergent and the corresponding surfaces are hyperbolic. The equation of the surface in the display’s color space coordinate system, and in particular the axis of symmetry, varied systematically from individual to individual. A hyperbolic geometry is compatible with studies that emphasize a modification of the photometric vector with changing adaptations.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3