Affiliation:
1. OSTIM Technical University
Abstract
The calculation of optical system performance for laser beam propagation in optical turbulence, such as bit error rate (BER), signal-to-noise ratio, and probability of fade, requires the knowledge of scintillation. In this paper, we show the analytical expressions of the aperture-averaged scintillation using a new recently introduced power spectrum of the refractive index fluctuations for underwater turbulence, the oceanic turbulence optical power spectrum (OTOPS). In addition, we use this main result to investigate the impact of weak oceanic turbulence on free-space optical system performance for a propagating Gaussian beam wave. Similar to the atmospheric turbulence case, results show that aperture averaging can reduce the mean BER and the probability of fade several orders of magnitude if the receiver aperture is chosen with a diameter larger than the Fresnel zone,
L
/
k
. Being valid for weak turbulence regime in any natural waters, results present the variations of irradiance fluctuations and the performance of underwater optical wireless communication systems depending on the practical values of average temperature and average salinity concentration that can be encountered in any world’s waters.
Funder
Federal Defence Forces of Germany – Bundeswehr
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献