Light field image super-resolution based on raw data with transformers

Author:

Guo Xiao1ORCID,Sang Xinzhu1,Yan Binbin1ORCID,Chen Duo1,Wang Peng1

Affiliation:

1. Beijing University of Posts and Telecommunications

Abstract

Light field (LF) image super-resolution (SR) can improve the limited spatial resolution of LF images by using complementary information from different perspectives. However, current LF image SR methods only use the RGB data to implicitly exploit the information among different perspectives, without paying attention to the information loss from raw data to RGB data and the explicit structure information utilization. To address the first issue, a data generation pipeline is developed to collect LF raw data for LF image SR. In addition, to make full use of the multiview information, an end-to-end convolutional neural network architecture (namely, LF-RawSR) is proposed for LF image SR. Specifically, an aggregated module is first used to fuse the angular information based on a volume transformer with plane sweep volume. Then the aggregated feature is warped to all LF views using a cross-view transformer for nonlocal dependencies utilization. The experimental results demonstrate that our method outperforms existing state-of-the-art methods with a comparative computational cost, and fine details and clear structures can be restored.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference41 articles.

1. Refocusing plenoptic images using depth-adaptive splatting;Fiss,2014

2. Depth estimation algorithm for light field data by epipolar image analysis and region interpolation

3. Epinet: A fully-convolutional neural network using epipolar geometry for depth from light field images;Shin,2018

4. Light-field-depth-estimation network based on epipolar geometry and image segmentation

5. Cascade light field disparity estimation network based on unsupervised deep learning

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3