Abstract
A narrow beam propagating through the disordered optical fiber first undergoes diffusive broadening, until its width becomes comparable to the localization length. The study of numerical algorithms and statistical methods in the simulation analysis process of disordered optical fibers demonstrates that the influence of polarization characteristics and transverse grids on calculation errors is critical for statistical numerical simulation in disordered systems. We performed a detailed numerical analysis of the effect of different design parameters in disordered fibers on the localization effect—that is, the localization length, including the refractive index contrast, feature size, and fill-fraction. The results show that the optimal fill-fraction is 50%, and that higher refractive index contrast and larger feature size relative to the wavelength both result in a smaller effective beam width. Finally, numerical evidence is also provided that optical images can be transported via transverse Anderson localization.
Funder
National Key Technology RD Program
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials