Road marking BRDF model applicable for a wide range of incident illumination conditions

Author:

Spieringhs Rik Marco1ORCID,Audenaert Jan,Smet KevinORCID,Heynderickx Ingrid1,Hanselaer Peter

Affiliation:

1. TU Eindhoven

Abstract

To drive safely and comfortably, an adequate contrast between the road surface and road markings is needed. This contrast can be improved by using optimized road illumination designs and luminaires with dedicated luminous intensity distributions, taking advantage of the (retro)reflective characteristics of the road surface and road markings. Since little is known about road markings’ (retro)reflective characteristics for the incident and viewing angles relevant for street luminaires, bidirectional reflectance distribution function (BRDF)-values of some retroreflective materials are measured for a wide range of illumination and viewing angles using a luminance camera in a commercial near-field goniophotometer setup. The experimental data are fitted to a new and optimized “RetroPhong” model, which shows good agreement with the data [root mean squared error (RMSE)<0.13, normalized root mean squared error (NRMSE)<0.04, and the normalized cross correlation ratio (NCC)>0.8]. The RetroPhong model is benchmarked with other relevant (retro)reflective BRDF models, and the results suggest that the RetroPhong model is most suitable for the current set of samples and measurement conditions.

Funder

Rijkswaterstaat

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3