Abstract
Small eyebox in wide-angle holographic near-eye display is a severe limitation for 3D visual immersion of the device. In this paper, an opto-numerical solution for extending the eyebox size in these types of devices is presented. The hardware part of our solution expands the eyebox by inserting a grating of frequency fg within a non-pupil forming display configuration. The grating multiplies eyebox, increasing the possible eye motion. The numerical part of our solution is an algorithm that enables proper coding of wide-angle holographic information for projecting correct object reconstruction at arbitrary eye position within the extended eyebox. The algorithm is developed through the employment of the phase-space representation, which facilitates the analysis of the holographic information and the impact of the diffraction grating in the wide-angle display system. It is shown that accurate encoding of the wavefront information components for the eyebox replicas is possible. In this way, the problem of missing or incorrect views in wide angle near-eye display with multiplied eyeboxes is efficiently solved. Moreover, this study investigates the space-frequency relation between the object and the eyebox and how the hologram information is shared between eyebox replicas. The functionality of our solution is tested experimentally in an augmented reality holographic near-eye display that has maximum field of view of 25.89°. Obtained optical reconstructions demonstrate that correct object view is obtained for arbitrary eye position within extended eyebox.
Subject
Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献