Eyebox expansion with accurate hologram generation for wide-angle holographic near-eye display

Author:

Chlipala MaksymilianORCID,Martinez-Carranza JuanORCID,Idicula Moncy Sajeev,Kukołowicz RafałORCID,Kozacki TomaszORCID

Abstract

Small eyebox in wide-angle holographic near-eye display is a severe limitation for 3D visual immersion of the device. In this paper, an opto-numerical solution for extending the eyebox size in these types of devices is presented. The hardware part of our solution expands the eyebox by inserting a grating of frequency fg within a non-pupil forming display configuration. The grating multiplies eyebox, increasing the possible eye motion. The numerical part of our solution is an algorithm that enables proper coding of wide-angle holographic information for projecting correct object reconstruction at arbitrary eye position within the extended eyebox. The algorithm is developed through the employment of the phase-space representation, which facilitates the analysis of the holographic information and the impact of the diffraction grating in the wide-angle display system. It is shown that accurate encoding of the wavefront information components for the eyebox replicas is possible. In this way, the problem of missing or incorrect views in wide angle near-eye display with multiplied eyeboxes is efficiently solved. Moreover, this study investigates the space-frequency relation between the object and the eyebox and how the hologram information is shared between eyebox replicas. The functionality of our solution is tested experimentally in an augmented reality holographic near-eye display that has maximum field of view of 25.89°. Obtained optical reconstructions demonstrate that correct object view is obtained for arbitrary eye position within extended eyebox.

Funder

Narodowe Centrum Nauki

Politechnika Warszawska

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3