Space optical communication system for space optical networks and deep space exploration

Author:

Wang Jianmin,Li Bin,Gao Haochun,Lin Yang,Su Zhiqian

Abstract

The acquisition time of tens to hundreds of seconds in the optical link between satellites makes it difficult to meet the needs of constructing spatial optical networks. In addition, as a basic requirement for deep space explorers, autonomous attitude determination and autonomous navigation demand the installation of separate, expensive, and complex inertial devices, and the communication data rate is too low to meet the timely transmission of large amounts of data. In this paper, we proposed and developed a multifunctional fusion space optical communication system for space optical networks and deep space exploration, which has the functions of autonomous attitude determination, autonomous navigation, and high-speed optical communication. The sub-second acquisition time can meet the requirements of space optical network construction, and the ability of autonomous attitude determination and autonomous navigation significantly reduce the amount of R&D expenses of the explorer; decrease the volume, weight, and power consumption of the explorer; and improve the reliability and autonomous survival ability of the explorer. The paper provides the structure, working principle, and main algorithm models and conducts a feasibility analysis and field experiments. The experimental results showed that the average open-loop pointing accuracy of the optical terminal is 95.8 µrad (attitude determination accuracy), which can be improved to 39.1 µrad after filtering, and the acquisition time is less than 1 s. For deep space exploration, the navigation accuracy is less than 67.6 km in the cruise phase and 10 km in the acquisition phase, and field experiments have also proven its feasibility. The significance of our research work lies in proposing what we believe to be a new system operation scheme and design method for optical communication systems, and its results can be widely applied in all fields of space optical communication.

Funder

National Defense 863 Program

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3