Single-frame 3D lensless microscopic imaging via deep learning

Author:

Grant-Jacob James A.1ORCID,Praeger Matthew1ORCID,Eason Robert W.1,Mills Ben1ORCID

Affiliation:

1. University of Southampton

Abstract

Since the pollen of different species varies in shape and size, visualizing the 3-dimensional structure of a pollen grain can aid in its characterization. Lensless sensing is useful for reducing both optics footprint and cost, while the capability to image pollen grains in 3-dimensions using such a technique could be truly disruptive in the palynology, bioaerosol sensing, and ecology sectors. Here, we show the ability to employ deep learning to generate 3-dimensional images of pollen grains using a series of 2-dimensional images created from 2-dimensional scattering patterns. Using a microscope to obtain 3D Z-stack images of a pollen grain and a 520 nm laser to obtain scattering patterns from the pollen, a single scattering pattern per 3D image was obtained for each position of the pollen grain within the laser beam. In order to create a neural network to transform a single scattering pattern into different 2D images from the Z-stack, additional Z-axis information is required to be added to the scattering pattern. Information was therefore encoded into the scattering pattern image channels, such that the scattering pattern occupied the red channel, and a value indicating the position in the Z-axis occupied the green and blue channels. Following neural network training, 3D images were formed from collated generated 2D images. The volumes of the pollen grains were generated with a mean accuracy of ∼84%. The development of airborne-pollen sensors based on this technique could enable the collection of rich data that would be invaluable to scientists for understanding mechanisms of pollen production climate change and effects on the wider public health.

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3