Abstract
We establish a first-principle model for the simulation of spatiotemporal light pulse dynamics based on the combination of the time-dependent Schrödinger equation and the unidirectional propagation equation. The proposed numerical scheme enables computationally efficient simulation while being stable and accurate. We use the new model to examine self-focusing of a short pulse in atomic hydrogen and show that an accurate description of the excited-levels dynamics can only be achieved by a propagation model with an ab-initio description of the light-matter interaction, which accounts for the laser-dressed multilevel structure of the system, including bound and free states, and its sub-cycle response.
Funder
Deutsche Forschungsgemeinschaft
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献