Affiliation:
1. Shenzhen University
2. Shenzhen Technology University
3. South China Normal University
Abstract
Orbital angular momentum (OAM) mode offers a promising modulation dimension for high-order shift-keying (SK) communication due to its mode orthogonality. However, the expansion of modulation order through superposing OAM modes is constrained by the mode-field mismatch resulting from the rapidly increased divergence with mode orders. Herein, we address this problem by propose a phase-difference modulation strategy that breaks the limitation of modulation orders via introducing a phase-difference degree of freedom (DoF) beyond OAM modes. Phase-difference modulation exploits the sensitivity of mode interference to phase differences, thereby providing distinct tunable parameters. This enables the generation of a series of codable spatial modes with continuous variation within the same superposed OAM modes by manipulating the interference state. Due to the inherent independence between OAM mode and phase-difference DoF, the number of codable modes increases exponentially, which facilitates establishing ultra-high-order phase shift-keying by discretizing the continuous phase difference and establishing a one-to-one mapping between coding symbols and constructed modes. We show that a phase shift-keying communication link with a modulation order of up to 4 × 104 is achieved by employing only 3 OAM modes (+1, + 2 and +3), and the decode accuracy reaches 99.9%. Since the modulation order is exponentially correlated with the OAM modes and phase differences, the order can be greatly improved by further increasing the superimposed OAM modes, which may provide new insight for high-order OAM-based SK communication.
Funder
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
Shenzhen Science and Technology Program
Natural Science Foundation of Top Talent of SZTU
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Phase Encoding of Fractional Orbital Angular Momentum for high-capacity Optical Communication;2024 IEEE International Conference on Communications Workshops (ICC Workshops);2024-06-09