High-order orbital angular momentum mode-based phase shift-keying communication using phase difference modulation

Author:

Chen Jiafu12ORCID,Huang Zebin1,Wang Peipei1,Ye Huapeng3ORCID,Chen Shuqing1ORCID,Fan Dianyuan1,Liu Junmin2ORCID

Affiliation:

1. Shenzhen University

2. Shenzhen Technology University

3. South China Normal University

Abstract

Orbital angular momentum (OAM) mode offers a promising modulation dimension for high-order shift-keying (SK) communication due to its mode orthogonality. However, the expansion of modulation order through superposing OAM modes is constrained by the mode-field mismatch resulting from the rapidly increased divergence with mode orders. Herein, we address this problem by propose a phase-difference modulation strategy that breaks the limitation of modulation orders via introducing a phase-difference degree of freedom (DoF) beyond OAM modes. Phase-difference modulation exploits the sensitivity of mode interference to phase differences, thereby providing distinct tunable parameters. This enables the generation of a series of codable spatial modes with continuous variation within the same superposed OAM modes by manipulating the interference state. Due to the inherent independence between OAM mode and phase-difference DoF, the number of codable modes increases exponentially, which facilitates establishing ultra-high-order phase shift-keying by discretizing the continuous phase difference and establishing a one-to-one mapping between coding symbols and constructed modes. We show that a phase shift-keying communication link with a modulation order of up to 4 × 104 is achieved by employing only 3 OAM modes (+1, + 2 and +3), and the decode accuracy reaches 99.9%. Since the modulation order is exponentially correlated with the OAM modes and phase differences, the order can be greatly improved by further increasing the superimposed OAM modes, which may provide new insight for high-order OAM-based SK communication.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Natural Science Foundation of Top Talent of SZTU

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase Encoding of Fractional Orbital Angular Momentum for high-capacity Optical Communication;2024 IEEE International Conference on Communications Workshops (ICC Workshops);2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3