Towards a better understanding of the surface smoothing effect in gas cluster ion beam processing with molecular dynamics simulation and experiment

Author:

Ji Peng123,Tang Wa123,Hu Haixiang123ORCID,Leng Rongkuan123ORCID,Qiao Guanbo123,Zhang Xuejun123

Affiliation:

1. University of Chinese Academy of Sciences

2. State Key Laboratory of Applied Optics

3. Chinese Academy of Sciences

Abstract

In recent years, the application of gas cluster ion beam (GCIB) technology has made great progress. Due to the similar essence of a monoatomic ion beam, the GCIB also shows flashes of brilliance in material processing. It has been reported that smoothness can be greatly improved after the rough surface is bombarded by the GCIB. This indicates that the GCIB processing has great potential in optical fabrication. Although the surface smoothing effect has been investigated, there is still a lack of dynamic micro-analysis for GCIB processing, which is limited for better understanding the mechanism of smoothing effect. In this paper, the surface smoothing effect in GCIB processing is explicitly investigated with molecular dynamics (MD) simulation and experiment. The principle of GCIB processing is compared with the traditional monoatomic ion-beam based processing, and details of the MD simulation procedure are introduced. Based on this, the dynamic micro-analysis of GCIB processing is conducted under different processing conditions. The simulations reveal the phenomena of atomic removal and migration in GCIB processing, which plays an important role in explaining the mechanism of surface smoothing effect. The experiment was performed on the silicon substrate with the in-house GCIB processing machine. The results indicate that the initial rough surface with dense protrusions can be greatly smoothed, and the root mean square (RMS) value is reduced from 0.586 nm to 0.191 nm. Both simulation and experiment can provide a better understanding of smoothing effect mechanism in GCIB processing.

Funder

National Natural Science Foundation of China

Scientific and Technological Development Program of Jilin

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3