Abstract
Multi-wavelength phase retrieval provides a competitive solution to lensless holographic imaging that features a low-cost, compact design and high data acquisition speed. However, the existence of phase wraps poses a unique challenge for iterative reconstruction, and the resulting algorithms often suffer from limited generalizability and increased computational complexity. Here, we propose a projected refractive index framework for multi-wavelength phase retrieval that directly recovers the amplitude and unwrapped phase of the object. General assumptions are linearized and integrated into the forward model. Based on an inverse problem formulation, physical constraints and sparsity priors are incorporated, which ensures imaging quality under noisy measurements. We experimentally demonstrate high-quality quantitative phase imaging on a lensless on-chip holographic imaging system using three color LEDs.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献