End-to-end physics-informed deep neural network optimization of sub-Nyquist lenses

Author:

Lindsay Marshall B.ORCID,Kovaleski Scott D.ORCID,Varner Andy G.,Veal Charlie T.,Anderson Derek T.,Price Stanton R.1,Price Steven R.1

Affiliation:

1. U.S. Army Engineer Research and Development Center

Abstract

In this paper, an approach for optimizing sub-Nyquist lenses using an end-to-end physics-informed deep neural network is presented. The simulation and optimization of these sub-Nyquist lenses is investigated for image quality, classification performance, or both. This approach integrates a diffractive optical model with a deep learning classifier, forming a unified optimization framework that facilitates simultaneous simulation and optimization. Lenses in this work span numerical apertures from approximately 0.1 to 1.0, and a total of 707 models are trained using the PyTorch-Lightning deep learning framework. Results demonstrate that the optimized lenses produce better image quality in terms of mean squared error (MSE) compared to analytical lenses by reducing the impact of diffraction order aliasing. When combined with the classifier, the optimized lenses show improved classification performance and reduced variability across the focal range. Additionally, the absence of correlation between the MSE measurement of image quality and classification performance suggests that images that appear good according to the MSE metric may not necessarily be beneficial for the classifier.

Funder

Engineer Research and Development Center

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3