Integrated photonics on the dielectrically loaded lithium niobate on insulator platform

Author:

Han Xu1ORCID,Yuan Mingrui,Xiao HuifuORCID,Ren Guanghui1ORCID,Nguyen Thach Giang1ORCID,Boes Andreas12ORCID,Su Yikai3ORCID,Mitchell Arnan1ORCID,Tian Yonghui

Affiliation:

1. RMIT University

2. The University of Adelaide

3. Shanghai Jiao Tong University

Abstract

Thin-film lithium niobate on insulator (LNOI) is emerging as one of the promising platforms for integrated photonics due to the excellent material properties of lithium niobate, which includes a strong electro-optic effect, high second-order optical nonlinearity, a large optical transparency window, and low material loss. Although direct etching of lithium niobate has been adopted more widely in recent years, it remains to be seen if it will be adopted in foundry processes due to the incompatibility with standard CMOS fabrication processes. Thus, the scalability of the LNOI platform is currently still limited when compared with other platforms such as silicon photonics. Dielectrically loaded LNOI waveguides may present an alternative. These waveguides have been used to demonstrate a range of optical components with a simplified fabrication process while demonstrating competitive performance. In this contribution, we review the recent progress in dielectrically loaded LNOI waveguides, summarize the advantages and disadvantages of different loading materials, compare the performance of different platforms, and discuss the future of these platforms for photonic integrated circuits.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Australian Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3