Synergistically enhanced ultraviolet emission of Yb doped ZnO films by using a capping of ultrathin Al and SiO2 microspheres

Author:

Zhang L.,Heng C. L.,Wang X.,Su W. Y.,Finstad T. G.1

Affiliation:

1. University of Oslo

Abstract

We studied the enhancement effects of ultraviolet (UV) emission from rare earth ytterbium (Yb) doped ZnO films, by using capping layers of Al and SiO2 micro-spheres. The films were deposited on Si substrates with magnetron sputtering followed by high temperature (∼1000°C) heat treatment, and then capped with a nanoscale ultrathin aluminum (Al) layer and/or SiO2 micro-spheres on the surface of the films. The photoluminescence (PL) results indicate that compared to the case without any capping, the UV emission is enhanced by a factor ranging from several to dozens times, the films capped with 2.0 nm Al layer and 5.0 µm SiO2 microspheres have the longest highest PL intensity among the samples. The PL enhancements are discussed in terms of increased optical (or electrical) fields around the surface of the films combined with defect passivation after the capping. Our work has proposed a strategy to enhance the UV emissions of ZnO, which will broaden the application potential of ZnO in UV photonics.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3