Affiliation:
1. Qufu Normal University
2. Southern Medical University
Abstract
Acoustic resolution photoacoustic microscopy (AR-PAM) is a major modality of photoacoustic imaging. It can non-invasively provide high-resolution morphological and functional information about biological tissues. However, the image quality of AR-PAM degrades rapidly when the targets move far away from the focus. Although some works have been conducted to extend the high-resolution imaging depth of AR-PAM, most of them have a small focal point requirement, which is generally not satisfied in a regular AR-PAM system. Therefore, we propose a two-stage deep learning (DL) reconstruction strategy for AR-PAM to recover high-resolution photoacoustic images at different out-of-focus depths adaptively. The residual U-Net with attention gate was developed to implement the image reconstruction. We carried out phantom and in vivo experiments to optimize the proposed DL network and verify the performance of the proposed reconstruction method. Experimental results demonstrated that our approach extends the depth-of-focus of AR-PAM from 1mm to 3mm under the 4 mJ/cm2 light energy used in the imaging system. In addition, the imaging resolution of the region 2 mm far away from the focus can be improved, similar to the in-focus area. The proposed method effectively improves the imaging ability of AR-PAM and thus could be used in various biomedical studies needing deeper depth.
Funder
Natural Science Foundation of Shandong Province
Guangdong Provincial Key Laboratory of Biomedical Optical Technology
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献