Efficiency assessment of wood and cellulose-based optical elements for terahertz waves

Author:

Mavrona Elena1ORCID,Hu Yijie23,De Freitas Siqueira Gilberto2,Rüggeberg Markus4,Popov Sergei5,Berglund Lars A.5,Hack Erwin1ORCID,Nyström Gustav2,Zolliker Peter1ORCID

Affiliation:

1. Laboratory for Transport at Nanoscale Interfaces

2. Laboratory for Cellulose and Wood Materials

3. South China University of Technology

4. Institut für Holztechnologie Dresden

5. KTH Royal Institute of Technology

Abstract

Polarized THz time domain spectroscopy was used to study the anisotropic properties of wood-based materials for potential optical elements in the THz range, such as half-wave and quarter-wave plates. Wood samples of different species and sample thickness were studied experimentally showing high birefringence but rather high absorption. We elaborate on two approaches to optimize the optical properties for use as wave plates and assess them based on a figure of merit describing their efficiency as a function of birefringence and absorption. The first approach is to dry the wood samples, which significantly improves the efficiency of wave plates. The second approach is the use of artificially produced cellulose samples using 3D printing and freeze drying techniques, which also show birefringence caused by their similar macroscopic cellulose fibre structure. These materials have the potential as cost effective THz elements that are easy to tailor and produce for use at specific frequencies.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3