Affiliation:
1. The University of Tennessee -Knoxville
2. University of Tennessee Space Institute
3. National Aerospace Solutions
Abstract
Characterization of the thermal gradients within supersonic and hypersonic flows is essential for understanding transition, turbulence, and aerodynamic heating. Developments in novel, impactful non-intrusive techniques are key for enabling flow characterizations of sufficient detail that provide experimental validation datasets for computational simulations. In this work, Resonantly Ionized Photoemission Thermometry (RIPT) signals are directly imaged using an ICCD camera to realize the techniques 1D measurement capability for the first time. The direct imaging scheme presented for oxygen-based RIPT (O2 RIPT) uses the previously established calibration data to direct excite various resonant rotational peaks within the S-branch of the C3Π, (v = 2) ← X3Σ(v′ = 0) absorption band of O2. The efficient ionization of O2 liberates electrons that induce electron avalanche ionization of local N2 molecules generating N2+, which primarily deexcites via photoemissions of the first negative band of
N
2
+
(
B
2
Σ
u
+
−
X
2
Σ
g
+
)
. When sufficient lasing energy is used, the ionization region and subsequent photoemission signal is achieved along a 1D line thus, if directly imaged can allow for gas temperature assignments along said line; demonstrated here of up to five centimeters in length. The temperature gradients present within the ensuing shock train of a supersonic under expanded free jet serves as a basis of characterization for this new RIPT imaging scheme. The O2 RIPT results are extensively compared and validated against well-known and established techniques (i.e., CARS and CFD). The direct imaging capability fully realizes the technique’s fundamental potential and is expected to be the standard of implementation going forward. The direct imaging capability can play instrumental roles in future scientific studies that rely upon acute characterization of thermal gradients within a medium that cannot be easily resolved by a point. Furthermore, the removal of the spectrometer greatly reduces the cost, complexity, and optical alignment associated with prior RIPT measurements.
Funder
U.S. Department of Energy
National Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献