Spatial resolution enhancement with line-scan light-field imaging

Author:

Shi ShengxianORCID,Yu Chengshuai1,Zhou Hongyu1,Wang Rui1,Zhao ZhouORCID,Ji Yu,New T. H.2,Qi Fei

Affiliation:

1. VOMMA (Shanghai) Technology Co. Ltd.

2. Nanyang Technological University

Abstract

This Letter proposes a line-scan-based light-field imaging framework that records lines of a light-field image successively to improve its spatial resolution. In this new, to the best of our knowledge, light-field imaging method, a conventional square or hexagonal microlens array is replaced with a cylindrical one. As such, the spatial resolution along the cylindrical axis remains unaffected, but angular information is recorded in the direction perpendicular to the cylindrical axis. By sequentially capturing multiple rows of light-field images with the aid of a translation device, a high-resolution two-dimensional light-field image can then be constructed. As a proof of concept, a prototype line-scan light-field camera was built and tested with the 1951 USAF resolution chart and the high-precision calibration dot array. Good measurement accuracies in the x, y, and z directions are demonstrated and prove that line-scan light-field imaging can significantly improve spatial resolutions and could be an alternative for fast three-dimensional inspections in the production line.

Funder

Aero Engine Corporation of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3