Abstract
Additive manufacturing (AM) is a highly competitive, low-cost, and high-degree-of-manufacturing technology. However, AM still has limitations because of some defects. Thus, defect detection technology is essential for quality enhancement in the AM process. Super-resolution (SR) technology can be utilized to improve defect image quality and enhance defect extraction performance. This study proposes a defect extraction method for additive manufactured parts with improved learning-based image SR and the Canny algorithm (LSRC), which is based on direct mapping methodology. The LSRC method is compared with the bicubic interpolation algorithm and the neighbor embedding (NE) algorithm in SR reconstruction quality and robustness. The experimental results show that the proposed LSRC method achieves satisfactory performance in terms of the averaged information entropy (E), standard deviation (SD), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM), which are 7.259, 45.301, 27.723, and 0.822, respectively. The accordingly average improvement rates of the E, SD, PSNR, and SSIM, are 0.45%, 7.15%, 5.85%, and 6.35% in comparison with the bicubic interpolation algorithm, while the comparison data are 0.97%, 13.40%, 10.55%, and 15.35% in terms of the NE algorithm. This indicates that the LSRC method is significantly better than the comparison algorithm in reconstruction quality and robustness, which is of great significance for the extraction and analysis of key defect information of additive manufactured parts.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献