Demonstrating low Raman background in UV-written SiO2 waveguides

Author:

Jensen Mathias Novik,Gates James C.1,Flint Alex I.1,Hellesø Olav GauteORCID

Affiliation:

1. University of Southampton, University Road

Abstract

Raman spectroscopy can give a chemical ’fingerprint’ from both inorganic and organic samples, and has become a viable method of measuring the chemical composition of single biological particles. In parallel, integration of waveguides and microfluidics allows for the creation of miniaturized optical sensors in lab-on-a-chip devices. The prospect of combining integrated optics and Raman spectroscopy for Raman-on-chip offers new opportunities for optical sensing. A major limitation for this is the Raman background of the waveguide. This background is very low for optical fibers but remains a challenge for planar waveguides. In this work, we demonstrate that UV-written SiO2 waveguides, designed to mimic the performance of optical fibers, offer a significantly lower background than competing waveguide materials such as Si3N4. The Raman scattering in the waveguides is measured in absolute units and compared to that of optical fibers and Si3N4 waveguides. A limited study of the sensitivity of the Raman scattering to changes in pump wavelength and in waveguide design is also conducted. It is revealed that UV-written SiO2 waveguides offer a Raman background lower than −107.4 dB relative to a 785 nm pump and −106.5 dB relative to a 660 nm pump. Furthermore, the UV-written SiO2 waveguide demonstrates a 15 dB lower Raman background than a Si3N4 waveguide and is only 8.7 − 10.3 dB higher than optical fibers. Comparison with a polystyrene bead (in free space, diameter 7 µm) reveal an achievable peak SNR of 10.4 dB, showing the potential of UV-SiO2 as a platform for a Raman-on-chip device capable of measuring single particles.

Funder

Norges Forskningsråd

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3